
rAD-A169 264 A SGFTNARE IHPLEMENTRTION OF RN INTERACTIVE GRPMHICS I
S R1 SYSTEM FOR THREE DIMENSIONRL MODELING RND LRYOUT(U)

NRVRL POSTORROURTE SCHOOL MONTEREY CR S MUNGSING
UNCLASSIFIED MAR S6 F/G 5/S U

EEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EEEEEEEEEEEEEl

L3 2
.36 2

III1I" '=
1.2 1 14 L

VlCR~ll' tt, 7

- -

*elo .'..

".''.? -- ' " '-".'" "/'- • i'." -". " ,'-;- ,-"-"• "- "- "-"-'."- ,."• ".".- ."- "- . .- .. .- ".-".-".-". ". ".... - .- ". ...- " -- "-* -'"- -%

• . - ". ". % ". , . . , . • . . ". " " " , " , . ". " ' ~ " " " -, ". " " . . "% ° M oCRo. o" % ",%o -

.- °. °..'.. - .- ' "% " ." .'.. .' .'%..." %-% .. ' ,-'+.' -°. '..%." .- - .. - .. .' . . '..'.. .- ' , . '.. .' " .' ." ," ," ." .. ,o .'% " - .. ' . -

i/ ! 4 'l :! I, ' ii~rviI r il !l~iltl I I l h! ! .;-l~l-il ili/I ! lI !t / l i" i i ¢ ili Il i l~ 13) !
I

I i !]'0 i .H

.at

NAVAL POSTGRADUATE SCHOOL
Monterey, CaliforniaI

LECT,
JUL02 1

..-- -

THESIS
A SOFTWARE IMPLEMENTATION OF AN

INTERACTIVE GRAPHICS SYSTEM FOR THREE DIMENSIONAL
MODELING AND LAYOUT

by

Surasak Mungsing

___ March 1986

ii, Thesis Advisor: Michael J. Zvda
-t. -

LI. Approved for public relcaso; distribution is unlimited

F: 86 2' 1084........

7k

SECURITY CLASSIICArIoly Wo#T =1E ~-)r''
REPORT DOCUMENTATION PAGE 4

l~a REPORT SECURITY CLASSiFICATION 1b RESTRICTIVE MARKINGS

2a SECLR!TY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILAILITY OF REPORT

Zb DCLASIFIATIO ,O~NGRDINGSCHEULEApproved for public release; distribution p
is unlimited

4PERFORMING ORGANIZATION REOTNME()S MONITORING ORGANIZATION REPORT NUMB4ERIS) 6

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL I's NAME OF MONITORING ORGANIZATION1 (if applicable)
Naval Postgraduate School j Code 52 Naval Postgraduate School

6C ADDRESS XCtry. State. and ZIP Coe) 7b ADDRESS (City, State, and ZVP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ela NAME OF F',jNDING, SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUjMSER

,)RGANIZATON (if api~cable)

Sc AIDDRESS (Cry. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK AORIC J.NIT
ELEMENT NO NO NO ACCESS:ON NO

£(include Security Classification)

A SOFTWARE IMPLEMENTATION OF AN INTERACTIVE GRAPHICS SYSTEM FOR THREE DIMENSI0N$k~ODELINC
AND LAYOUT

Munesinc,- Siirasak
3a 7v OF REPORT 13b T ME COVERED 14 DATE OF REPORT (Year, Month. Day)15PGCON

'6 P.EEAYNOTATION

* COSArI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

EL) GROUP SUB-GROUP INTERACTIVE, GRAPHICS, THREE DIMENSIONAL, LAYOUT, MODELING.

WALKTHROUGH, PIPING, MENU

%3S'RAC- :Continue on reverie if necessary and identify by block number)
This thesis examines interactive techniques for viewing a 3-D building model in a walk-

through fashion and for placing 3-D piping into a 3-D building model. The focus of re-
search is software implementation using the C programming language and thle IRIS Graphics
Library on thle Silicon Graphics Inc. IRIS Turbo 2400 interactive graphics system. The
first part of the research is concerned with drawing, viewing a 3-D building model, and
examining interactive techniques required for building walkthrough mechanism. The second
part is concerned with the development of techniques necessary to allow the placement of
3-D piping into a 3-D building model using 2-D graphics display and a mouse device. Thie

alg orithms and implementation of these techniques are presented.

3' 3 j' ON, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICA*ION

1..CASS-F1EDtjNL'MITED 0 SAME AS RPT 0 DTiC jSERS uxnc lassi fied
.j..EOF RESPONSiELE NDIVPDUAL 22t) TELEPHONE (Include Area Code) 22t OFF!(E S"MB1O.

Prof Michael Z 'da 408 646i-2305 V-1 Zk
DO FORM 1473.,84 VAR 83 APR edition may be used wAnlexhawstgd SECURITY CLASS:FICA "ON OF - S DACE

All other tdtom are obsolete

-. -- b k - -- - -1

Approved ror public release, distribution i% unlimited.

A Software Iialdeniet ation of as Jut (eraetive Graphics System

for Three Dimetnsional Modeling aij(I Layout

by

Siirnsnk Nluigsisig

Flight Lieutenant, Royal Thai Air Force

B.S.E.. University of South Florida. 1975
M.Eng., Chulalongkorn University, Thailand.1984

Subinitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POST GRADUATE SCHOOL

March 1986

Author: . -i___
-

Surasak Mu n

Approved by : ..

Michael J. Zyda, The is dviso

Paul W. Callahan, Second Reader

Vincent Y. uin.Chairtnan,

Department of Computer Science

Kneale T. Marshal

Dean of Information and Policy Scien '

2.

ABSTRACT

This thesis examines interactive techniques for viewing a 3-D building model

in a walkthrough fashion and for placing 3-D piping into a 3-D building model.

The focus of research is software implementation using the C programming

language and the IRIS Graphics Library on the Silicon Graphics Inc. IRIS Turbo

2400 interactive graphics system. The first part of the research is concerned with

drawing. viewing a 3-D building model, and examining interactive techniques
required for building walkthrough mechanism. The second part is concerned with
the development of techniques necessary to allow the placement of 3-D piping I,

into a 3-D building model using 2-D graphics display and a mouse device. The
algorithms and implementation of these techniques are presented.

Accesion For -

NTIS CRA&I
DTIC TAB .
Unannounced 0
Justification

By
Dist, ib ;ti3o. I

Availability Codes L4.

Ajaii d- d or
Dist Special

*d-
.. /

Je~~n W W W-7 *'f.'j& =v wwl

TABLE OF CONTENTS

1. INTRODUCTION.. 5

A. DISCUSSION ... 5

B. THESIS OBJECTIVE ... 6

C. THESIS CONTENTS.. 7

II. RESEARCH RESOURCES... 10

A. COMPUTER SYSTEM... 10

B. IRIS GRAPHICS LIBRARY ... 11

C. MENU PACKAGE .. 11

III. BUILDING WALKTHROUGH ALGORITHM............................ 16

A. BUILDING WALKTHROUGH MECHANISM 16

B. BUILDING WALKTHROUGH ALGORITHM 17

IV. PIPING LAYOUT ALGORITHM .. 33

A. THREE DIMENSIONAL PIPING LAYOUT TECHNIQUE 33

B. THREE DIMENSIONAL PIPING LAYOUT ALGORITHM 34

V. PROGRAM IMPLEMENTATION DETAILS............................ 41

VI. CONCLUSIONS AND RECOMMENDATIONS.......................... 48

A. CONCLUSIONS ... 48

B. LIMITATIONS AND RECOMMXENDATIONS 48

BIBLIOGRAPHY ... 50

INITIAL DISTRIBUTION LIST .. 51

4

fI

1. INTRODUCTION

A. DISCUSSION
Physical models have been used in many layout design applications. A layout

design is an arrangement or plan for assembly and/or installation of objects from

models. The purpose behind layout design is to reduce or to eliminate problems

and difficulties that may be encountered during the construction phase. In the

aircraft industry, mock-ups (models of actual size) of complete airplane exteriors A

and interiors are required for the layout design of hydraulic/pneumatic piping,

electrical wiring, control cabling, electronic /avionic equipment installation, etc. In

building and factory piping/wiring layout design. scale models are used. The

* layout design process can involve many changes, requiring modifications of the

* design and. perhaps, modifications of the mock-ups and scale models. However.

reproducing and modifying the design, mock-ups. or scale models is expensive and
time consuming.

An interactive graphics display system is an alternative approach for the

layout design task. It provides a fast and interactive method for the creation and

modification of a layout design. In interactive graphics. an object is composed of

a collection of graphics primitives such as three-dimensional lines, points, and

polygons. The organization of these primitives defines a representation for a

particular object. The image of an object can be created from its mathematical

representation and displayed upon a graphics screen. The mapping process can

involve a tremendous number of calculations. With today's VLSI technology, the

calculations can be performed in hardware and in a pipeline fashion to provide

instantaneous results.

A view of a three-dimensional object can be created by the viewing process

shown in Figure 1.1. The process transforms a 3-D object into a 2-D projection

plane. Conceptually, an object in 3-D world space is clipped against the 3-D view

* volume, projected onto a 2-D projection plane and finally scaled into a display

device's coordinate system. The display can be interactively changed by

modifying the position and orientation of objects by means of a set of interactive

input devices. Typical devices include keyboards, buttons, valuators (dials), and

xy position indicators or locators.

5

It is possible to interact with a 3-D layout design on a 2-D graphics display.

The visual display of a layout model can be put on a screen by the process shown

in Figure 1.2. The output pathway starts with an applications program, a piece

of software that maintains the mathematical representation of a model, making

calls to the graphics package. The graphics package transforms the data passed

to it and passes the transformed data to the device driver. The device driver

converts the data received into the opcode streams required by a piece of

hardware called the display processing unit (DPU). The DPU then converts the

opcode streams into a form that can be used by the refresh system that maintains

the display on a cathode-ray tube (CRT).
Control values from the interactive devices are passed to the applications

program along the input pathway. These input values are used to make a change

in the picture from the application program. The new picture is sent to the screen

via the output pathway described above. Typical interactive inputs are dragging

and picking. Dragging is a technique for dynamically moving an object around

with a locator. This technique includes dynamic scaling and rotation of objects to

a desired size and orientation. Picking is a technique that allows the designer to

pick an object or collection of objects to be operated upon. However, the

operations which concern "getting the picture there" (from the applications

program to the display surface) and "manipulating the picture" (by way of some

movement of the interactive devices such that a picture change is generated)

involve intensive mathematical description encoding and matrix transformation

calculations. Only workstations with these capabilities in hardware can handle

these operations at a satisfactory level of performance.

B. THESIS OBJECTIVE

The objective of this study is to examine and develop interactive techniques

for viewing a 3-D building model in a "walkthrough" fashion and for placing 3-D

piping into the 3-D building. A high performance graphics workstation is

required as a research tool for this effort as it can provide the human user

immediate feedback of visual information in response to any physical control

manipulations made. In general, any workstation with leading edge capabilities is

suitable for this research. The Silicon Graphics Inc. IRIS Turbo 2400 system has

been chosen for this effort as it is available for use in the Graphics and Video

Laboratory of the Naval Postgraduate School.

*'i / ,r
5

* i *.' ,. , ., ,....- - - :, . .y,. .. , . - .- ,.-. .-. . . ',"-"-"-"-"-"-. ."".".." .,"~ . ." .. , '. % . - . *

The focus of this research is a software implementation using the C

programming language and the IRIS Graphics Library. The first part of the

research work concerns drawing, viewing a 3-D building model, and examining the

interactive techniques required for building "walkthrough". The second part

concerns examining interactive techniques necessary to allow the placement of 3-D

piping into a 3-D building using a 2-D graphics display and a mouse device.

, C. THESIS CONTENTS

The remainder of this study is devoted to the presentation of the IRIS 2400

system, the development of supporting algorithms and the implementation for a

building modeling and a 3-D piping layout design. Chapter 2 introduces the IRIS

workstation architecture, its significant features, the IRIS graphics library, and

the Gaddis menu system. Chapter 3 describes the building walkthrough and

walkthrough movement algorithms. Chapter 4 describes the 3-D piping layout

algorithm. Chapter 5 describes the program implementation details. Chapter 6

presents the conclusions of the research work.

-"-

7

- - S S S ,* S. 7 S S S~

0 u

.0 d

44 ,- U

ad
g 4 0

U ?+4
* 0

S~ 4'
0 0~

-~; .54 5

to a a

UU

0 -4 . 4.) .45

in a-n 1
0 u 2 $

a1 0 a

4.)4>

.4

U >.

C) 4)
44.

0 > I
HO..

0.

C.L.

0I 0

II. RESEARCH RESOURCES

A. COMPUTER SYSTEM

The IRIS Turbo 2400 workstation was chosen as th research tool for this

thesis because it is an engineering workstation with powerful general purpose

computing and fast response graphics. and is already available at the Naval

Postgraduate School's Graphics and Video Laboratory. The system was designed

by Silicon Graphics Inc. to combine real-time three-dimensional color graphics

with the Unix operating system and Ethernet communication. It

incorporates custom VLSI chips in the design to improve speed and reliability.

Figure 2.1 shows the IRIS Turbo 2400 system and its significant features.

Conceptually. the system is made up of three pipelined components: the

central processing system. the Geometry Pipeline, and the raster subsystem.

These three systems communicate over a high-speed private bus. Disk and

network communication occurs over the system Multibus. Figure 2.2 shows the

block diagram of the IRIS Turbo 2400 architecture.

The central processing unit (CPU) is a Motolora 68020 microprocessor

running at 10 MHz. It manages display lists, runs the application program, and

controls the Geometry Engine ((;E) and raster subsystem.

The Geometry Engine (Figure 2.3) is a custom VLSI processor designed for

real-time 3-D graphics. It consists of four 32 bit-floating point ALU's and a

microcode control store. The first four engines perform 4-by-4 matrix

transformations such as rotation, translation. and scaling. The next four to six

engines clip the object in 2 or 3 dimensions. The last two engines perform a

perspective division and map the 3-D coordinates to screen space.

The raster subsystem (which consists of three primary components: the frame

buffer controller, the update controller, and the display controller) receives the

coordinates transformed and clipped by the Geometry Pipeline, It updates the

image memory by filling in pixels corresponding to these coordinates, and

refreshes the display.

10

'M7pjP.w. -Jr_1~~X. Q-_ V. V- -r," WT rV -1 -d V'W' W.TL - M7-4V W'p-M-rJ ~v-

B. IRIS GRAPHICS LIBRARY

The IRIS Graphics Library is a software package that provides high- and low-

level support for graphics on the IRIS Workstation. It is the general display

processing system that allows an applications programmer to describe and

manipulate objects in world coordinate space.

The IRIS Graphics Library consists of graphics and utilities commands.

There are eight categories of these commands in the library:

.4~

1. Coordinate transformation commands that manipulate a stack of transformation matrices.
These commands map a user-defined world coordinate system onto the screen.

2. Primitive drawing commands that draw points, lines, polygons, circles, arcs, curves, and text
strings on the screen.

3. Object creation and editing commands that build complicated shapes from simple ones. The

newly defined objects can be replicated or modified as desired.

4. Display mode and color map commands that affect the way the IRIS uses its bitplane
memory and determine the color used to draw shapes on the screen.

5. Line style, texture, cursor, and font commands that select characteristics for drawing lines.
filling polygons. and writing text strings.

6. Input commands that initialize and read input devices that allow the user to poll a device
directly or read entries from the event queue.

7. Picking and selecting commands that allow the user to identify the objects that are visible in
a given area of the screen.

8. Geometric computing commands that provide access to the computing capabilities of the
graphics hardware.

The use of these commands is described in the IRIS User's Guide.

C. MENU PACKAGE
The graphics programs for this study utilize a menu package, designed by

Capt. Michael E. Gaddis. USMC. This menu package allows the programmer to

specify and use numerous individualized menus for selection of program branches.

The package is v, y simple to use. It is self contained, in that all procedures

are ready to run. except for the initialization procedure. The user describes all

11 r

Iu

the menus to be used in the program in the initialization procedure. Each a menu

has menu number, menu name, number of options. and option names associated

with it. The program calls this procedure for menu installation and calls another

procedure in the menu package, with specified menu number and screen

coordinate's (location of the menu) as parameters, for display.

The menu selection mechanism is made through a three-button mouse. The

left and right buttons are used for scrolling up and down the menu. The scrolling

highlights an option. The middle button activates the highlighted option and

causes the program to branch to a procedure specified by that option.

12

Ethernet between IRIS.. and VAX.e

q4

ED
Display monitor

keybor
r'Dik drive A' • um

' interfae

Keyboard House

IRIS Turbo 2400 Graphics Workstation:

* 32 bit Motorola 68020 Processor

a2 MB CPU Memory

- 1024x768x32 bit display memory

* Floating Point Accelerator

- 144 B Disk Storage

* Cartridge Tape Unit

* Geometry Pipeline with Geometry Egines and Geometry Accelerators

- 6OS Non-Interlaced Display

* Hardware Smooth Shading

- Unix System V

* IRIS Graphics Library

- Ethernet to VAXes

* 16 bit Z-Buffer for Hidden Surface Elimination

* Digitimer Tablet

- Window Manager with a high-level user interface and overlapping

windows for output of both text and interactive 3-D graphics

Figure 2.1 IRIS 2400 System and Its Features.

13

, ,. .' ,." ., .. ~--.- . a' .- ,. .a- . ..---...... ,. .

to network

Ethernet Disk Floating

controller controller point

Accele rator

Fram-

PRIVATE BUS

Figu2 ror m 2.26 Block 32ga fteI Tro20 ytm

14

W. W. W. I

Geometry Engine

LJGeometry Accelerator

User
coordinates

Matrix multipliers

.1j

Optional clippers Cipr

Scalers

Physical screen

coordinates

Figure 2.3 Geometry pipeline.

III. BUILDING WALKTHROUGH ALGORITHM

A. BUILDING WALKTHROUGH MECHANISM

The mechanism for building walkthrough is very useful in piping layout

design. Such a mechanism allows the designer to look at a particular piping

systems within the building model, from different angles and positions, to

investigate whether there are any volumetric interferences within the piping

system. among other piping system. with the building structures, and with any

objects within the building.

In interactive computer graphics. the visual effect of building walkthrough

can be simulated by manipulating the picture on the screen through an

interactive input device. To simulate building walkthrough the coordinates of a

building model are clipped against a specified view volume, perspectively

projected onto a projection plane whose normal is parallel to the line of sight

defined by a viewpoint and a reference point in the world coordinate space, and

finally mapped onto the screen coordinates. The perspective projection is used to

provide a degree of realism since it creates an effect similar to that of the human

visual system. A mouse is used as an interactive input device to change the

coordinates of the viewpoint and the reference point. The change in coordinates

of these points causes a change in the picture on the screen.

The walkthrough visual effect produced by interactive computer graphics is

analogous to the image produced by a remotely controlled camera that moves in

3-D space. The viewpoint is where the camera is and the line of sight is in the

direction that the camera is facing. Turning movement in such a system only

requires changes in the line of sight (i.e. the coordinates (,-" the reference point).

Moving toward or away from an object. and circling around an object only

require changes in the position of the viewpoint and perhaps changes in the
rosition of the reference point. For such movement, the line of sight is

maintained. The walkthrough mechanism can be effectively controlled by a

three-button mouse device. With three buttons, a mouse can produce up to eight

inputs. Seven of these are used for controlling the move-forward, move-backward,

turn-left, turn-right, turn-up, turn-down, and circle-around movements. Pressing

a button or a combination of buttons produces an input to modify the coordinates

of the viewpoint and the line of sight and affects the picture on the screen. The

16

p% 'vI

continuous modification of the viewpoint and the line of sight, that produces the

walkthrough visual effect on the screen, is achieved by holding down a button or a

combination of buttons. Leaving all three buttons unpressed produces the input

that has no effect to the picture on the screen.

B. BUILDING WALKTHROUGH ALGORITHM

The building walkthrough algorithm used in this study is composed of the

following outlined steps:

1. Type of movement determination: Designate a combination for mouse buttons to each
type of walkthrough movement.

2. Determination of sets of viewpoint-reference point relative positions: For each
type of movement, compare coordinates of the reference point to those of the viewpoint to
determine their relative position in the world coordinate system. Define sets of viewpoint-
reference point relative positions such that the coordinates of the viewpoint and the reference
point can be modified by a set of coordinate modification functions.

S. Formulation of coordinate modification functions: Formulate a set of coordinate
modification functions used on the coordinates of the viewpoint and the reference point
according to the type of movement determined from step 1 and the set of viewpoint-reference
point relative positions determined from step 2.

The building walkthrough algorithm developed from the above outlined steps

and used in this study is shown in Figures 3.1 - 3.8. A

.
'

17 '

4 . .".,

Begin walkthrough algorithm

create objects
initialize the viewpoint and the reference point

specify the display viewport
specify the perspective viewing pyramid
specify point and direction of view with the initial viewpoint and reference point
clear the viewport
display the objects in the viewport

while(TRUE)
begin

/* test for the type of movement and branch to the
appropriate movement algorithm to modify the coordinates
of the viewpoint and the reference point * I

if all three buttons are hit then
branch to the circle-around algorithm

else if the left button and the right button are hit then
branch to the move-backward algorithm

else if the middle button and the left button are hit then
branch to the turn-down algorithm

else if the middle button and the right button are hit then
branch to the turn-up algorithm

else if the left button is hit then
branch to the turn-left algorithm

else if the right button is hit then
branch to the turn-right algorithm

-A

else if the middle button is hit then

branch to the move-forward algorithm
A,-

clear the viewport ,

specify point and direction of view with new viewpoint and reference point

display the objects in the viewport

end
bp

End walkthrough algorithm

Figure 3.1 Building Walkthrough Algorithm.

18

b %

*...........•-.....•..... .-.-•• -+.. - -.b,-.+.+m
* .-.. . . -.... .. :.... - • ,- *.- --% ,.,-..-.... -, ,U A , ,. ..- ,- . - A ,A , . A ,+,.+ . ,, A-.. A . . , ,+

Begin circle-around algorithm

pi=3.14 15 9 2 7 /* constant ~
theta=pi,'180. /* turning angle of 1 degree ~

/* let Vx,VY,Vz and Rx,Ry.Rz be the coordinates of

*the viewpoint and the reference point respectively.

d is the distance between the viewpoint and the

reference point.

phi2 is the angle between the line of sight and the

xy-plane.

phi is the angle between the projected line of sight

on xz-plane and the x-axis. *

/calculate the values of d, phi2, and phi 5

d sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry)(v'y-Ry) ±(Vz-Rz)(Vz-Rz)

phi2 = rcsin{ IVy-Ryl /d)
phi arcsin{ Vz-RzI /(d cos(phi2))

/~first case of view point-reference point relative position '

if Rx<=Vx and Rz<Vz then

check if the line of sight is still in the case boundary '

if phi>=theta then
Vx = Rx -d cos(phi2) cos(phi-theta)
Vz =Rz - d cos(phi2) sin(phi-theta)

'the line of sight crosses the boundary into the second case /

else
Vx=Rx - d cos(phi2) cos(theta-phi)

Vz = Rz - d cos(phi2) sin(theta-phi)

/* second case of viewpoint-reference point relative position ,

else if Rx<zVx and Rz>=Vz then

'~check if the line of sight is still in the case boundary *j

if (phi-theta) <= (pi,"'2.) then

Vx - Rx - d cos(phi2) cos(phi+theta)
Vz =Rz - d cos(phi2) sin(phi--theta)

the line of sight crosses the boundary into the third case*

else
Vx =Rx - d cos(phi2) sin(theta-pi/2. --phi)

Vz =Rz - d cos(phi2) cos(theta-pi/2.---phi)

Figure 3.2 Circle-around Algorithm. 4

19

a.

/* third case of viewpoint-reference point relative position */

else if Rx>=Vx and Rz>Vz then
S.

/* check if the line of sight is still in the case boundary */
if phi>=theta then

Vx = Rx - d cos(phi2) cos(phi-theta)
Vz = Rz - d cos(phi2) sin(phi-theta)

/* the line of sight crosses the boundary into the fourth case
else Vx = Rx- d cos(phi2) cos(theta-phi)

Vz = Rz - d cos(phi2) sin(theta-phi)

/* fourth (last) case of viewpoint-reference point relative position */
else

/* check if the line of sight is still in the case boundary */
if (phi-theta) <= (pi/2.) then

Vx - Rx - d cos(phi2) cos(phi~theta)
Vz Rz - d cos(phi2) sin(phi+theta)

the line of sight crosses the boundary into the first case
else

Vx = Rx - d cos(phi2) sin(theta -pi/2.-a- phi)
Vz = Rz - d cos(phi2) cos(theta-pi/2.+phi)

End circle-around algorithm

Figure 3.2 Circle-around Algorithm (continue).

.20

'a.'

• . .-.-

Begin move-backward algorithm

pi = 3.1415927 /* constant */
mrate = 0.5 /* moverate of 50 centimeters */

/* Vx,Vy,Vz are viewpoint coordinates.
Rx,Ry,Rz are reference point coordinates.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. */

/ calculate the values of d, phi2, and phi */

d = sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry)(Vy-Ry) (Vz-Rz)(Vz-Rz) }
phi2 = arcsin(Vy-RyJ /d)
phi = arcsin{ Vz-Rzl /(d cos(phi2)) }

/* check for the first case of viewpoint-reference point relative
position and calculate the new x and z coordinates of the
viewpoint and the reference point. */

if Rx<=Vx and Rz<Vz then
Vz = Vz m- rate cos(phi2) sin(phi)
Vx = Vx - mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx -- mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

else
Ry = Ry -t mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

/* check for the second case of viewpoint-reference point relative

position and calculate the new x and z coordinates of the
viewpoint and the reference point. */

else if Rx<Vx and Rz>=Vz then
Vz = Vz - mrate cos(phi2) sin(phi)
Vx = Vx -- mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx + mrate cos(phi2) cos~phi)

Figure 3.3 Move-backward Algorithm.

21

°- •• - . • °. - . h - - - - - - - - - . S%

I'.

/* check whether the viewpoint is above or below the reference point

and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin(phi2)
else

Ry = Ry - mrate sin(phi2)

Vy = Vy -t- mrate sin(phi2)

/* check for the third case of viewpoint-reference point relative
position and calculate the new x and z coordinates of the
viewpoint and the reference point. */

else if Rx>=Vx and Rz>Vz then
Vz = Vz - mrate cos(phi2) sin(phi)

Vx = Vx - mrate cos(phi2) cos(phi)

Rz = Rz - mrate cos(phi2) sin(phi)

Rx = Rx - mrate cos(phi2) cos~phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

else
Ry = Ry - mrate sin(phi2)

Vy = Vy -r mrate sin(phi2)

/* check for the fourth case of viewpoint-reference point relative
position and calculate the new x and z coordinates of the
viewpoint and the reference point. *,/

else
Vz = Vz + mrate cos(phi2) sin(phi)

Vx = Vx - mrate cos(phi2) cos(phi)

Rz = Rz - mrate cos(phi2) sin(phi)

Rx = Rx - mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin(phi2)

else
Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin(phi2)

End move-backward algorithm

Figure 3.3 Move-backward Algorithm (continue).

22

",,.'-.' , ;''_'- ', ', ' '' ,_-.' .' .' .' ' L. " " " " " " " " .". " " " " "• . . . -

Begin turn-down algorithm "

pi = 3.1415927 /* constant */

theta = pii180. /* turning angle of 1 degree */

Vx.Vy.Vz are the coordinates of the viewpoint.

Rx,RyRz are the coordinates of the reference point.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the yz-plane.
phi is the angle between the projected line of sight on the yz-plane
and the z-axis. */

calculate the values of d, phi2, and phi */
d = sqrt{ (Vx-Rx)(Vx-Rx) (Vy-Ry)(Vy-Ry) -(Vz-Rz)--(Vz-Rz) }
phi2 arcsin , Vx-Rx, , d
phi = arcsin{ Vy-Ry! '(d cos(phi2)) }

* first case of viewpoint-reference point relative position */

if Rz<=Vz and Ry>Vy then

,* check if the line of sight is still in the case boundary *i
if (phi>=theta then

calculate the new y and z coordinates of the reference point *,"
Rz = Vz - d cos(phi2) cos(phi-theta)

Ry = Vy - d cos(phi2) sin(phi-theta)
* the line o sight crosses the boundary into the second case /

else
calculate the new y and z coordinates of the reference point *

Rz = Vz - d cos(phi2) cos(theta-phi)
Ry Vy - d cos(phi2) sin(theta-phi)

second case of viewpoint-reference point relative position */

else if R.z<Vz and Ry<=Vy then

check if the line of sight is still in the case boundary /

if (pi,,'2.-phi) >= theta then
calculate the new y and z coordinates of the reference point
Rz - Vz - d cos(phi2) cos(phi-theta) %

Ry = Vy - d cos(phi2) sin(phi-theta)
* the line o sight crosses the boundary into the third case

else
* calculate the new y and z coordinates of the reference point *

Rz = Vz + d cos(phi2) sin(theta-pi,2.-phi)
Ry = Vy - d cos(phi2) cos(theta-pi/2. -phi)

-".

Figure 3.4 Turn-down Algorithm.

23

' " "."=- ,-,, "-" " ;",", .'. :' --, '- " .' .';:-.'-.'.:-"".'-.'.." .'.. '" -". ." .. -: ." ." ." .-: ". "..'..',".< ...' .'.". -...:. " Z'. '. "4%

third case of viewpoint-reference point relative position */
else if Rz>-- Vz and Ry<Vy then

* check if the line of sight is still in the case boundary */

if phi = theta then
* calculate the new y and z coordinates of the reference point */

Rz = Vz - d cos(phi2) cos(phi-theta)
Ry Vy - d cos(phi2) sin(phi-theta)

the line o sight crosses the boundary into the fourth case * /

else
* calculate the new y and z coordinates of the reference point */

Rz = Vz d cos(phi2) cos(theta-phi)
Ry Vy d cos(phi2) sin(theta-phi)

* fourth (last) case of viewpoint-reference point relative position */

else

* check if the line of sight is still in the case boundary *

if (pi 2.-phi) > - theta then
calculate the new y and z coordinates of the reference point */
Rz Vz d cos(phi2) cos(phi-theta)
Ry Vy - d cos(phi2) sin(phi-theta)

* the line o sight crosses the boundary into the first case*,

else
* calculate the new y and z coordinates of the reference point */

Rz Vz - d cos(phi2) sin(theta-pi'2.-phi)
Ry x- Vy - d cos(phi2) cos(theta-pi,2. -phi)

End turn-down algorithm

Figure 3.4 Turn-down Algorithm (continue).

%-

24

,24 Ca

+ a-

.- J**~ .a--.--.*-****.*.- '...-.,.-a ..- .. *- -~ a.- *a - . .
* - a a I

Begin turn-up algorithm 4

pi = 3.1415927 /* constant *y
theta = pi,"180. /* turning angle of I degree *1

'Vx.Vy,Vz are viewpoint coordinates.

Rx,Ry,Rz are reference point coordinates.
d is the distance between the viewpoint and the reference point *

phi2 is the angle between the line of sight and the yz-plane */
phi is the angle between the projected line of sight on the yz-plane P
and the z-axis. *0

J

* calculate the values of d, phi2, phi */
d - sqrt{ (Vx-Rx)(Vx-Rx) - (Vy-Ry)(Vy-Ry) -((Vz-Rz)-(Vz-Rz) }
phi2 arcsin (Vx-Rx/d
phi = arcsin{ Vy-Ry /(d cos(phi2)) } .

first case of viewpoint-reference point relative position */ ,

if Rz<Vz and Ry>=Vy then .,

• check if the line of sight is still in the case boundary */

if (pi!2.-phi) >= theta then
calculate the new y and z coordinates of the reference point */
Rz = Vz - d cos(phi2) cos(phi-theta)
Ry Vy - d cos(phi2) sin(phi-t-theta)

the line of sight crosses the boundary into the second case
else

• calculate the new y and z coordinates of the reference point */
Rz Vz - d cos(phi2) sin(theta-pi/2.-phi)
Ry Vy d cos(phi2) cos(theta-pi,/2.-phi)

second case of viewpoint-reference point relative position */

else if Rz> = Vz and Ry>Vy then

check if the line of sight is still in the case boundary *'
if phi >= theta then

• calculate the new y and z coordinates of the reference point */

Rz = Vz - d cos(phi2) cos(phi-theta)
Ry -Vy -. d cos(phi2) sin(phi-theta)

the line of sight crosses the boundary into the third case

else
* calculate the new y and z coordinates of the reference point

Rz = Vz + d cos(phi2) cos(theta-phi)
Ry = Vy - d cos(phi2) sin(theta-phi)

P.

Figure 3.5 Turn-up Algorithm.

25
Io-.

Ii

S.- - - - - - - - - - - - --".".- --. ." "-". .'''..2..-""''" . -.. -- .. -.. ,'''..-. '',.,-;..-., :'''-'.. . -".- -.- .'-",'

"* third case of viewpoint-reference point relative position ,

else if Rz>Vz and Ry<=Vy then

* check if the line of sight is still in the case boundary

if (pii2.-phi) >= theta then
/s calculate the new y and z coordinates of the reference point

Rz Vz - d cos(phi2) cos(phi-theta)
Ry Vy - d coslphi2) sin(phi • theta)

the line of sight crosses the boundary into the fourth case
else

calculate the new y and z coordinates of the reference point
Rz = Vz - d cos(phi2j sin(theta-pi/2, phi)
Ry Vy - d cos(phi2) cos(theta-pi, 2. - phi)

* fourth (lastcase of viewpoint-reference point relative position /

else

check if the line of sight is still in the case boundary *,

if phi >= theta then
/ calculate the new y and z coordinates of the reference point /

Rz = Vz - d cos(phi2) cos(phi-theta)
Ry = Vy - d cos(phi2) sin(phi-theta)

• the line of sight crosses the boundary into the first case
else

* calculate the new y and z coordinates of the reference point

Rz = Vz - d cos(phi2) cos(theta-phi)
Ry = Vy - d cos(phi2) sinjtheta-phi)

End turn-up algorithm

Figure 3.5 Turn-up Algorithm (continue).

26

. o.

Begin turn-left algorithm
pi = 3.1415927
theta = pi,'180. /* turning angle of I degree */

* Vx,Vy,Vz and Rx.Ry,Rz are coordinates of the viewpoint and
the reference point respectively.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. '/

calculate the values of d. phi2, and phi "

d = sqrt{ (Vx-Rx)(Vx-Rx) - (Vy-Ry)(Vy-Ry) - (Vz-Rz)(Vz-Ra} }
phi2 arcsin(Vy-Ryid)
phi = arcsin{ Vz-Rz (d cos(phi2)) ,

'• first case of viewpoint-reference point relative position */
if Rx<= Vx and Rz<Vz then

check if the line of sight is still in the case boundary 5/

if phi -= theta then
calculate the new x znd z coordinates of the viewpoint and the reference point /
Rx = Vx - d cos(phi2) cos(phi-theta)
Rz = Vz - d cos(phi2) sin(phi-theta)

the line of sight crosses the boundary into the second case
else

* calculate the new x znd z coordinates of the viewpoint and the reference point "'
Rx - Vx - d cs(phi2) cos(theta-phi)
Rz -z - d cosiphi2) sin(theta-phi)

second case of viewpoint-reference point relative position ,
else if Rx- Vx and Rz;. - z then

* check if the line of sight is still in the case boundary *,
if (pi 2-phi) - theta then

" calculate the new x znd z coordinates of the viewpoint and the reference point S/

Rz z - d cos(phi2) sin(phi -theta) .

Rx Vx - d cos~phi2) cos(phi-theta)
the line of sight crosses the boundary into the third case 5/

else
° calculate the new x znd z coordinates of the viewpoint and the reference point .

Rx \x - d cos(phi2) sin(theta-pi 2. -phi)
Rz -V - d cos(phi2) cos(theta-pi, 2 .-phi)

Figure 3.6 Turn-left Algorithm. "-

27.

.%4

-- • a ir. JS *.-I-.I °*-a *I*1.. . . . ' *- -- -:

1third case of viewpoint-reference point relative position '

else if Rx > =Vx and Rz >Vz t hen

/* check if the line of sight is still in the case boundary

if phi >= theta then
'calculate the new x znd z coordinates of the viewpoint and the reference point '
Rx =Vx -d cos(phi2) cos(phi-theta)
Rz = Vi - d cos(phi2) sin(phi-theta)

-the line of sight crosses the boundary into the fourth case
else

,calculate the new x znd coordinates of the viewpoint and the reference point'!S
Rx = Vx - d cos(phi2) cos(theta-phi)
Rz V - d cos(phi2) sin(theta-phi)

fourth (last) case of view poin t- reference point relative position '

I.4

else

/* check if the line of sight is still in the case boundary */
if jpi 2.phi) >= theta then

/* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos(phi2) cos(phi-theta)
Rz = Vz - d cos(phi2) sin(phi -theta)

/* the line of sight crosses the boundary into the first case
else

/* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos(phi2) sin(theta-pi/2.-phi)
Rz = Vz - d cos(phi2) cos(theta-pi2.- phi)

,..

End turn-left algorithm

Figure 3.6 Turn-left Algorithm (continue).

28

else .U
'-S

Begin turn-right algorithm
pi = 3.1415927
theta= pi,/180. /* turning angle of 1 degree */

/* Vx,Vy,Vz and Rx,Ry,Rz are coordinates of the viewpoint and
the-reference point respectively.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. /

/* calculate the values of d, phi2, and phi */
d = sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry)(Vy-Ry) + (Vz-Rz)(Vz-Rz) }
phi2 arcsin(I Vy-Ry /d)
phi - arcsin{ Vz-Rz'/(d cos(phi2)) }

/' first case of viewpoint-reference point relative position */
if Rx<Vx and Rz<=Vz then

* check if the line of sight is still in the case boundary */

if (pi/I2.-phi) >= theta then

/* calculate the new coordinates of the reference point */
Rx = Vx - d cos(phi2) cos(phi+theta)
Rz = Vz - d cos(phi2) sin(phi--theta) %

/* the line of sight crosses the boundary into the second case *"
else

/* calculate the new coordinates of the reference point */

Rx = Vx - d cos(phi2) sin(theta-pi/2.-phi)
Rz = Vz - d cos(phi2) cos(theta-pi/2.+phi)

4 * second case of viewpoint-reference point relative position *-

else if Rx< =Vx and Rz>Vz then

/* calculate the new coordinates of the reference point */

if phi >= theta then
/" calculate the new coordinates of the reference point /

Rz = Vz - d cos(phi2) cos(phi-theta)
Rx = Vx - d cos(phi2) sin(phi-theta)

/* the line of sight crosses the boundary into the third case
else

/* calculate the new coordinates of the reference point */
Rx = Vx - d cos(phi2) cos(theta-phi)
Rz = Vz - d cos(phi2) sin(theta-phi)

Figure 3.7 Turn-right Algorithm.

29

.*v.

..

-V4 4;-.- 71.- -IMeW--_ -731T --. FY 7

I.

/ * third case of view point-reference point relative position ~
else if Rx>Vx and Rz>=Vz then

/* calculate the new coordinates of the reference point *
if (pi/2.-phi) >= theta then

/ * calculate the new coordinates of the reference point *

Rx = Vx -d cos(phi2) cos(phi--theta)
Rz = Vz -t- d cos(phi2) sin(phi-.theta)

the line of sight crosses the boundary into the fourth case
else

,calculate the new coordinates of the reference point *
R~x = Vx - d cos(phi2) sin (theta-pi/2.±+phi)
Rz = Vz -+- d cos(phi2) cos(theta-pi/2.-phi)

7* fourth (last) case of viewpoint-reference point relative position *

else

"~calculate the new coordinates of the reference point *j
if phi> - theta then

'~calculate the new coordinates of the reference point *
Rx =Vx -~ d cos(phi2) cos(phi-theta)
Rz =Vz - d cos(phi2) sin(phi-theta)

~the line of sight crosses the boundary into the first case
else

*calculate the new coordinates of the reference point ~
Rx =Vx -- d cos(phi2) cos(theta-phi)
Rz = Vz + d cos(phi2) sin(theta-phi)

End turn-right algorithm

Figure 3.7 Turn-right Algorithm (continue).

30

Begin move-forw~rd algorithm

pi = 3.1415927 /* constant ~
mrate =0.5 /* move rate of 50 centimeters *

, Vx.Vv,Vz are view point coordinates.
Ix.y.Rz are reference point coordinates.

d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. *

,calculate the values of d, phi2, and phi ,

d =sqrt{ (Vx-Rx)(Vx-Rx) ,~ (Vy-Ry)(N'y-Ry) -(- 'z-Rz)(Vz-Rz)}

phi2 =arcsin(Vy-Ry, d
phi arcsin{ Vz-Rz , (d cos(phi2))}

*check for the first case v'iewpoint-reference point relative position
and calculate the new x aind z coordinates of' the viewpoint and
the reference point.

if Rx<K-Vx and Rz<Vz then
Vz =Vz - mrate cos(phi2) sin(phi) j* Vx.Vy,Vz are viewpoint coord ~
Vx =Vx - mrate cos(phi2) cos(phi)
RzRz - mrate cos(phi2) sin(phi) /*Rx,Ry,Rz are reference point coord*/
Rx =Rx - rnrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point.

if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

else
Ry =Ry -mrate sin(phi2)
Vy =Vy -t- mrate sin(phi2)

check for the second case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and

the reference point. */
else if Rx<Vx and Rz>=N'z then

Vz Vz -- mrate cos(phi2) sin(phi)
Vx = Vx - mrate cos(phi2) cos(phi)
Rz =Rz -mrate cos(phi2) sin(phi)
Rx =Rx - mrate cos(phi2) cos(phi)

Figure 3.8 Move-forward Algorithm.

31

/* check whether the viewpoint is above or below the reference point

and calculate the new y coordinates of the viewpoint and the reference point */
if Ry<Vy then

Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

else
Ry = Ry + mrate sin(phi2)
Vy = Vy + mrate sin(phi2)

/* check for the third case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and the reference point */

else if Rx>=Vx and Rz>Vz then
Vz = Vz - mrate cos(phi2) sin(phi)
Vx = Vx -- mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx + mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point

and calculate the new y coordinates of the viewpoint and the reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)

else
Ry = Ry -r mrate sin(phi2)
Vy = Vy mrate sin(phi2)

/* check for the fourth case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and the reference point */

else
Vz = Vz - mrate cos(phi2) sin(phi)
Vx = Vx mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx - mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point

and calculate the new y coordinates of the viewpoint and the reference point */
if Ry<Vy then

Ry Ry - mrate sin(phi2)
Vy Vy - mrate sin(phi2)

else
Ry Ry + mrate sin(phi2)
Vy = Vy -t mrate sin(phi2)

End move-forward algorithm

Figure 3.8 Move-forward Algorithm (continue).

32

" ',.:. .":' .' '"-.-.- .- ...-. '."*.-.- . .-, .,. - .- ,-,.'" ..- ".. ", -,.". ".,'"-.'-.. '. -. ""

IV. PIPING LAYOUT ALGORITHM

A. THREE DIMENSIONAL PIPING LAYOUT TECHNIQUE

Three-dimensional piping layout can be accomplished via an interactive

computer graphics system. The method for such an operation involves mapping

an image of the current piping system into a viewport on a graphics screen.

overlaying an image of a piping component in the same viewport, manipulating

the overlay image of the piping component with an interactive input device, and

updating the piping system.

There is one major difficulty associated with 3-D piping layout via an

interactive computer graphics system. This difficulty is with respect to the

problem of piping positioning which requires the translation and rotation of the

image of a 3-D piping component to a desired position and orientation on the 2-

D graphics screen. A poor graphical manipulation technique can result in a

hardly manageable and/or poorly performing system.

This study presents one 3-D piping layout technique. The technique is menu

driven, with each selection being made through a three-button mouse device. Our

piping positioning method uses a technique which dynamically moves an object

around with a mouse device. This technique is known as dragging. The

transformation (translation and rotation) of the overlay image of a piping

component is controlled by valuators provided by the mouse. Though a mouse

can provide only two valuators (horizontal and vertical), a menu can be used to

* support a transformation selection and only one valuator is sufficient for

* controlling a transformation.

Three views of the object space are used to eliminate ambiguity. The

orthogonal projections of the top view, front view, and side view of the layout

model can be selected for display during piping positioning manipulation to

* clarify the position and orientation of each piping component in the piping

system. An axis. in the screen coordinate system, is also used to provide directions

for translations and rotations of a piping component.

33

B. THREE DIMENSIONAL PIPING LAYOUT ALGORITHM
The piping layout algorithm is composed of the following outlined steps:

1. Piping system selection: Design and install a menu for piping system selection. Each
option identifies a piping system to be laid out or modified.

2. Piping component type selection: Design and install a menu for piping component type
selection. Each option identifies a type of a piping component. The standard types used are
straight pipe, elbow, tee, and reducer.

* -3. Dimension selection: Design and install menus for pipe diameter selection and elbow
turning angle selection. Drawing a straight pipe requires the diameter and the length of the
pipe. The length is interactively defined by the distance between two points on the graphics
screen marked by the cursor. Drawing an elbow component requires a diameter and a
turning angle. Drawing a tee component and a reducer component require a set of two
diameters.

4. Display of the piping system and piping components: Display the image of the
existing piping system according to the system identification selected from Step 1. Then
display the piping component according to the type and dimensions determined in Step 2
and Step 3.

5. Position and orientation adjustment: Design and install a menu for a piping
component position and orientation adjustment. The menu includes translation in x-
direction, y-direction, z-direction, and rotations about x-axis, y-axis, z-&xis, insertion, and
deletion options. Each option with the exception of the insertion and deletion options, when
selected, performs a type of transformation. The rate of transformation is determined by the
position of a valuator provided by a mouse device. Three views (top, front, side) of the
layout model are displayed to eliminate ambiguity during the position and orientation
adjust ment process.

6. Insertion and deletion of a piping component: After a piping component is
transformed to the desired position, it can be saved and added to the existing piping layout
by selecting the insertion option of the menu in Step 5. If the piping component is incorrect,
it can be deleted from the screen at any time by selecting the deletion option of the same

* menu.

The three dimensional piping layout algorithm developed from the above

outlined steps and used in this study is in Figures 4.1 - 4.6.

5- 34

Begin Piping Algorithm .

Display the pipe system selection menu

select an option from the menu

if the EXIT option is selected then

clear the screen and branch out of the algorithm to the IRIS system

else if the SPRINKLER option is selected then
system 1

branch to the View the Model Algorithm

else if the WATER SUPPLY/ DRAINAGE option is selected then
system =2
branch to the View the Model Algorithm

else if COMPLETE PIPE SYSTEM is selected then
system - 3
branch to the View the Model Algorithm

else if the NEW SYSTEM is selected then
system = 4
branch to the View the Model Algorithm

End Piping Algorithm

Figure 4.1 Piping Algorithm.

* 35

Begin View the Model Algorithm
determine the piping system selected by system value from the Piping algorithm
initialize the scale factor, translation amount, and rotation amount
display the image of the current piping system in the display viewport
display the "view the model" menu in the menu viewport %

while(TRUE)
begin

select an option from the menu

if the TOP VIEW option is selected then
rotate the modified image (if any) of the current piping system 90 degrees
about x-axis and display it in the display viewport

else if the SIDE VIEW option is selected then
rotate the modified image (if any) of the current piping system -90 degrees

about y-axis and display it in the display viewport
else if the FRONT VIEW option is selected then

display the modified (if any) image of the current piping system
in the display viewport

else if the PERSPECTIVE VIEW option is selected then
rotate the modified (if any) image of the current piping system
30 degrees about x-axis and 30 degrees about y-axis and display
it in the display viewport

else if the SCALE option is selected then
calculate the scaling factor from the position of the mouse valuator,
display the modified image of the current piping system in the
display viewport

else if the MOVE AROUND option is selected the

calculate the translation amounts in x,y from mouse valuators,
display the modified image of the current piping system

else if the ROTATE option is selected then
calculate the amount of rotation from the position of a mouse valuator,
display the modified image of the current piping system

else if the BFRAME option is selected then
display the modified (if any) image of the current piping system
if the building structural frame is not displayed then display it r
else if it is already displayed then remove it from the screen

else if the DRAW PIPE option is selected then
reinitialize the scale factor, the amount of translation, the amount of
rotation, and display the initial image of the current piping system
and branch out of the algorithm to the Drawpipe Algorithm

else if the WALKTHROUGH option is selected then
branch out of the algorithm to the Walkthrough Algorithm

else if the EXIT option is selected then
branch out of the algorithm to the Piping System Algorithm

end

End View the Model Algorithm

Figure 4.2 View the Model Algorithm.

36

s'-* -"

%I. ,. .

Begin Drawpipe Algorithm

display the pipe type menu in the menu viewport

select an option from the menu

if the STRAIGHT PIPE option is selected then
type =
branch out of the algorithm to the Dimension Algorithm

if the ELBOW option is selected then
type = 2

branch out of the algorithm to the Dimension Algorithm

if the TEE option is selected then
type - 3
branch out of the algorithm to the Dimension Algorithm

if the REDUCER option is selected then
type - 4
branch out of the algorithm to the Dimension Algorithm

if the DELETE option is selected then
delete the last drawn piping component from the current piping system,
recursively branch back to the beginning of the algorithm

if the VIEW option is selected then
branch out of the algorithm to the View the Model Algorithm

if the EXIT option is selected then
branch out of the algorithm to the Piping System Algorithm

End Drawpipe Algorithm

Figure 4.3 Drawpipe Algorithm.

37

,. 1

.. ,...

Begin Dimension Algorithm

check the piping component type value passed from the drawpipe algorithm

if type = I or type = 2 then

display the pipe diameter selection menu

select an option from the menu

if a pipe diameter is selected then
mark a point on the screen with the cursor and a mouse button to
indicate the initial position of the drawing piping component
if type = I then

mark another point to determine the length of the pipe,
calculate the length, and branch out of the algorithm and pass
the diameter value and the length value to the Insertpipe Algorithm

else if type = 2 then
display the turn angle selection menu
select an option for the turn angle value, branch out of the
algorithm and pass the selected turn angle value to the Insertpipe Algorithm

else if the VIEW option is selected then
branch out of the algorithm to the View the Model Algorithm

else if type = 3 or type = 4 then
display the pipe diameters selection menu

select an option from the menu

if a pair of diameters is selected then
branch out of the algorithm and pass the diameter values to
the Insertpipe Algorithm

else if the EXIT option is selected then
branch out of the algorithm to the Piping System Algorithm

End Dimension Algorithm

Figure 4.4 Dimension Algorithm.

38

-75 Y 47T, i -7-7 F77--r - 7-7

S.
S.

Begin Insertpipe Algorithm

display three views of the current piping system and three views of the
overlay image of the selected piping component with x-,y-,z- axes in the
display viewport

display the position adjustment menu in the menu viewport

while(TRUE)
begin

select an option from the menu

if a MOVE option (MOVE in x-, y-, or z- direction) is selected then
calculate the translation amount from the position of a mouse valuator,

display three views of the current piping system and the modified
three views of the overlay image of the piping component and axes

else if a ROTATE option (ROTATE about x-, y-, or z- axis) is selected then
calculate the rotation amount from the position of a mouse valuator,
display three views of the current piping system and the modified
three views of the overlay image of the piping component and axes

else if the VIEW SELECTION option is selected then
branch out of the algorithm to the Selectview Algorithm

else if the SAVE option is selected then
insert the piping component into the current piping system,
display the updated current piping system without axes, and
branch out of the algorithm to the Drawpipe Algorithm

else if the DELETE option is selected then
delete the overlay image of the piping component and axes from the screen

else if the EXIT option is selected then
branch out of the algorithm to the Piping System Algorithm

end

End Insertpipe Algorithm

Figure 4.5 Insertpipe Algorithm.

39

~~.. .. ~.-.- -a... *~.*.**.- - a~ ~" UY

M

4

Begin Selectview Algorithm

display the view selection menu in the menu vie%%port

while(TRUE)
begin

select an option from the menu

if the TOP VIEW option is selected then
display the top view of the piping system and the top view of the
overlay image of the piping component in the display viewport

else if the FRONT VIEW option is selected then
.play the front view of the piping system and the front view of the

overlay image of the piping component in the display viewport

else if the SIDE VIEW option is selected then
display the side view of the piping system and the side view of the
overlay image of the piping component in the display viewport

else if the THREE VIEWS option is selected then
display the three views of the piping system and the three views of the
overlay image of the piping component in the display viewport

else if the EXIT option is selected then
branch out of the algorithm to the lnsertpipe Algorithm

end

End Selectview Algorithm

Figure 4.6 Selectview Algorithm.

40
.1

V. PROGRAM IMPLEMENTATION DETAILS

A multi-file program. the implementation of the Walkthrough Algorithm and

the 3-D Piping Layout Algorithm in the C programming language, is included in

the appendix of this study. The program runs on the IRIS Turbo 2400

Workstation under the command "building".

The execution of the command "building" displays the program title (Figure

5.1) on the screen. From this point, the rest of the operation is self evident from

the display menus. The mouse is the only interactive input device. Hitting a

mouse button changes the picture on the screen to the picture of the Piping

System Menu (Figure 5.2).
The Piping System Menu is designed to offer five options: Sprinkler System.

Water Supply/Drainage System, Complete Piping System, New Piping System.

and Exit to the System. The Sprinkler system. the Water Supply/Drainage

System, and the Complete Piping System are predefined for the test runs. The
.New Piping System is the layout model without an existing piping system. This

option is used for the demonstration of a piping layout operation, via an

interactive computer graphics system. The Exit to the System option terminates

the program.

The user begins the piping layout operation by selecting a piping system

option fronm the Piping System Menu. The selection of a piping system clears the

screen then displays the View theModel Menu (Figure 5.3) in the menu viewport,

and displays a layout model with the selected piping system in the display
viewport.

The View the Model Menu presents the user with opt ions to view the top

v'iew. front view, side view, or perspective view of the layout model, options to

scale the image of the layout model up or down. to move the scaled image around

on the screen. and to rotate it about the y-axis. Other available options are the

Drawpipe option, the Walkithrough option, and the Exit to Piping System

opt ions.
The selection of the Drawpipe option, from the View the Model Menu,

displays the Piping Subsystem Menu (Figure 5.4). This menu is used to specify

the color of a piping component. In this study. cold water pipes are drawn in

blue, hot water pipes are drawn in red, and drainage pipes are drawn in black.

After the selection of an option to indicate the color of a piping component, the

41

Component Type Menu (Figure 5.5) is displayed for the selection of the piping

component to be drawn. The Component Type Menu offers four types of

components: straight pipe, elbow, tee, and reducer. Each type requires some

dimensions before it can be drawn. The straight pipe requires a pipe diameter
which is selected from a menu, and the length of the pipe which is specified by '

marking two points on the screen as directed by the program. The elbow
component requires a pipe diameter and a turning angle, both are selected from

menus prompted by the program. The tee component and the reducer component

require a set of two diameters. selected from a menu. Before a piping component

is drawn, the program instructs the user to mark the position of the component to
be drawn on the screen. A grid is overlaid in the display viewport to aid the user
in specifying the piping position (xy-plane). An image of a piping component is

overlaid in the display viewport after piping dimensions and position are specified.
The position and orientation of the overlay image of the piping component is

adjusted via the Position Adjustment Menu (Figure 5.6). The menu offers
options for viewing the overlay image of the piping component in a particular
view (top. front. side), for moving and rotating the overlay image of the piping

component to a desired position and orientation. The overlay image of the piping
component is added to the current piping system by the selection of the Insert

option, or removed from the screen by the selection of the Delete option from this
menu.

After the insertion or deletion of a piping component, the View the Model
Menu is displayed again so that the modified piping system can be viewed from

different viewpoints. At this point, the previously inserted pipes can be deleted, in

the reverse order of their insertions, starting from the most recently inserted pipes.
by the selection of the View the Model option. The user enters the building
walkthrough mode to view the modified piping system in a walkithrough fashion

by the selection of the Walkthrough option.

The selection of the Walkthrough option clears the screen and sets it up for
the walkithrough operation. The set up divides the screen into four display areas

(Figure 5.7). The first area, the largest one, is used to display the layout model (a
building model with a selected piping system). The visual effect for a building
walkthrough movement, occurs in this display area. The second area is used to

display static images of the orthogonal projections of the front view and the side

view of the layout model. The third display area is used to display a perspective
projection of the layout model. An image of a marker indicates the relative

42

ON

position of the viewer to objects in the world coordinate system. The fourth area

is used to display an instruction for building walkthrough control, an instruction

for picking an option, and pick options. The cursor is initially displayed in the

first area at the bottom of the screen and can be moved around with the mouse.

After the screen is set up for the building walkthrough operation, the mouse

becomes the main control. Its buttons are used in generating inputs for

walkthrough movements. Its movement moves the cursor on the screen. When

the cursor is moved inside a pick option boundary box and the left mouse button

is pressed, the selected option is made. When it is outside pick option boundary

boxes, holding down a mouse button or a combination of mouse buttons causes

changes in the picture on the screen. This action produces the visual effect of the

selected building walkthrough movement. The walkthrough control instruction is

displayed in the fourth display area. It provides information for generating an

input for each type of building walkthrough.

.-o

43

A
-U,,

*~~ .~KtC E

Hit any button to start.

Figure 5.1 The Tile of the Program.

Sprinkler System

Water Supply/Drainage

Complete Piping System

New Piping System

EXIT TO THE SYSTEM

Figure 5.2 Piping System Menu.

44

1. 'JIT 'p -. F r!jK.-d7 VV J -TA LFkmA r JR7zU -%P liq '~ T r w n7W r7V W -1ru ~ rVx-.WV2U~w vv-wvww d v x '- wv I.,ww,-r Wr. lc. r

............o.oo Oo .O o.O.. °. .0. oO O0

Top View

Front View

Side View

Perspective View

Scale Up/Down

Move

Rotate

Building Frame Toggle

DRAW PIPE

BUILDING WALKTHROUGH

EXIT TO PIPING SYSTEM MENU

Figure 5.3 View the Model Menu.

Hot Water Pipe

Cold Water Pipe

Drainage Pipe

EXIT TO PIPING SYSTEM MENU

Figure 5.4 Piping Subsystem Menu.

45

..

Staright Pipe

Elbow

Figure e 5. tomoen TypeMenu

Mover 5. n ComporentioneMeu

Move in Y-Direction

Move in Z-Direction

Figure v 5.6 Posi etion jsmn eu

RotateaboutX-A.i

RotateaboutY-Axi

Roat abu46 Ai

SEEC VE

SAV

*..5.-~. -5 .*S*** -. ~..5.*5 5 .L DELETE** S *

d: r:s . x xo ,-.4

'4.9. Z 94

I IN

944

0 4) rd0r..
V 0 0

~ ~ A. d

I,.
44 Ad a

-' .. 0540:.; =:

d . T E- 0 C o .

a aV cl

u > s = .

0~ 00 v -

-, mX E-44 E-4V 0 c0

-4 U

0

,_4 .- 4
o.-

0
"0 H

00

og

4J4

em ., o
0 "0 "U. I r0i

uro

L 0 d '.

UU

47.p

VN

VI. CONCLUSIONSAND RECOMMENDATIONS

A. CONCLUSIONS
This study demonstrates the interactive techniques for a building

walkthrough mechanism and for the placement of 3-D piping into a 3-D building

using a 2-D graphics display and a mouse device. The test run results indicate

that the performance (speed) of building walkthrough and piping positioning

mechanisms depends on the model complexity. The model which includes the

entire piping system requires much more time to produce a change in the picture

than one that includes just a particular piping system. It is recommended that

the designer select a single piping system for manipulation for fast interactive

response. Each layout model with a particular piping system can be viewed
together either in building walkthrough fashion or by manipulating the image of

the layout model on the screen. Though the test run results indicate that the

performance of the walkthrough mechanism depends on the complexity of the

layout model, the techniques are. in some extent, useful and viable to a piping

layout task. The technique of placing 3-D piping into a 3-D building is made

simple and efficient, by using a menu package to generate input commands. The

use of the mouse valuator to control the image transformation for piping

positioning is fairly accurate.

The study also illustrates the capabilities of interactive computer graphics as%
a computer aided design tool in a piping layout application. The drawing and

modification of a piping layout system is accomplished much faster than

conventional drafting techniques. Unlike conventional drafting techniques which

limit one to only three views (top, front, side), the layout model drawn by an

interactive computer graphics system can be viewed from many different
viewpoints in the world space and at any desired scale factor.

B. LIMITATIONS AND RECOMMENDATIONS
The Walkthrough Algorithm and the 3-D Piping Algorithm developed and

used in this study have some limitations:

1. The algorithms do not support hidden surface elimination. The components of the layout
models are wire frame drawings and are displayed in double buffer mode for fast response%

interaction. The images of objects on the screen depend on the order of the display
commands. The image of an object, in spite of the closer distance to the viewer. can not be
seen if it is drawn before the larger image of another object that is drawn at the same

48

Jb

coordinate location. Even though three views of the object space are displayed, ambiguity
still exists in a complex piping system.

2. The algorithms do not utilize a file system to support the updating of the layout model. Any
modification to a piping system is maintained during the walkthrough and the 3-D piping
layout operation, as long as the program does not exit to the UNIX system.

3. The algorithms do not utilize a pick mechanism for the identification of objects in the world
coordinate system that require editing. Hence the deletion of a piping component from a
piping system is designed to default to the most recently inserted component. However,
deletion of a number of inserted components can be done one at a time according to the
sequence of their insertion.

With these limitations. the interactive techniques and algorithms presented in

this study are no~t yet practical for a layout task in a complex industrial

processing plant. Additional studies in the areas of hidden surface elimination, file

access. and graphical editing are recommended for the improvement of the

algorithms.

~1

BIBLIOGRAPHY

Foley J. D., and Van Dam A., Fundamentals of Interactive Computer Graphics
Addison-Wesley, 1984.

Gardan Y., Lucas M., and Budynas R. G., Interactive Graphics in CAD , Unipub,
1984.

Naval Postgraduate School Report NPS 52-85-012, Workstation Graphics
Capabilities for the 1990's and Beyond , by M. J. Zyda, September 1985.

Silicon Graphics Incorporation. IRIS User's Guide Version 2.0 Update , document
number 5001-051-001-1, 1985.

Gaddis M. E.. Menu Package ,program written for the IRIS 2400 System at the
.Naval Postgraduate School, 1985.

50

.5

5|

I.

WA _ II I

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman (Code 52) 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Computer Technology Programs (Code 37)
Naval Postgraduate School
Monterey. California 93943

5. Michael J. Zyda (Code 52Zk) 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. LCDR Paul W. Callahan (Code 52Cs) 1
Department of Computer Science

Naval Postgraduate School
Monterey, California 93943

7. Office of the Air Attache' 2
The Royal Thai Embassy
5600 16th St., N.W.
Washington D.C. 20011

8. FLT LT Surasak Mungsing 2
13/2 Tanintorn Village
Wipawadee-Rangsit Rd.,
Bangkok 10210, Thailand

51

*.k.. .. .-.. -~ - ... - - -' -

J

'I

a'

4
4

.

* - *b*..S. ***b*.*..*'. ~. .. .

* S S . S

